This repository has been archived on 2025-02-26. You can view files and clone it, but cannot push or open issues or pull requests.
hilbert-os/kernel/application.cpp
2024-01-20 17:59:40 -05:00

280 lines
7.8 KiB
C++

#include <hilbert/kernel/application.hpp>
#include <hilbert/kernel/paging.hpp>
//TODO - scheduling.
namespace hilbert::kernel::application {
app_instance::app_instance()
: state(app_state::paused), framebuffer_vaddr(0) {
uint64_t p4_vaddr;
paging::map_new_kernel_page(p4_vaddr, p4_paddr);
p4 = (uint64_t *)p4_vaddr;
uint64_t p3_paddr;
uint64_t p3_vaddr;
paging::map_new_kernel_page(p3_vaddr, p3_paddr);
p3 = (uint64_t *)p3_vaddr;
for (int i = 1; i < 511; ++i)
p4[i] = 0;
p4[0] = paging::encode_pte(p3_paddr, true, true, true);
p4[511] = paging::kernel_p4e;
for (int i = 0; i < 512; ++i) {
p3[i] = 0;
p2s[i] = 0;
p1s[i] = 0;
p1es_to_free_on_exit[i] = 0;
}
}
void app_instance::map_page(uint64_t vaddr, uint64_t paddr,
bool write, bool execute, bool free_pram_on_exit
) {
uint64_t i = ((vaddr / 4096) / 512) / 512;
uint64_t j = ((vaddr / 4096) / 512) % 512;
uint64_t k = (vaddr / 4096) % 512;
if (p2s[i] == 0) {
uint64_t p2_paddr;
uint64_t p2_vaddr;
paging::map_new_kernel_page(p2_vaddr, p2_paddr);
p3[i] = paging::encode_pte(p2_paddr, true, true, true);
p2s[i] = (uint64_t *)p2_vaddr;
p1s[i] = new uint64_t *[512];
p1es_to_free_on_exit[i] = new bool *[512];
for (int u = 0; u < 512; ++u) {
p2s[i][u] = 0;
p1s[i][u] = 0;
p1es_to_free_on_exit[i][u] = 0;
}
}
if (p2s[i][j] == 0) {
uint64_t p1_paddr;
uint64_t p1_vaddr;
paging::map_new_kernel_page(p1_vaddr, p1_paddr);
p2s[i][j] = paging::encode_pte(p1_paddr, true, true, true);
p1s[i][j] = (uint64_t *)p1_vaddr;
p1es_to_free_on_exit[i][j] = new bool[512];
for (int u = 0; u < 512; ++u) {
p1s[i][j][u] = 0;
p1es_to_free_on_exit[i][j][u] = false;
}
}
p1s[i][j][k] = paging::encode_pte(paddr, true, write, execute);
p1es_to_free_on_exit[i][j][k] = free_pram_on_exit;
}
bool app_instance::is_page_owned(uint64_t vaddr) {
uint64_t i = ((vaddr / 4096) / 512) / 512;
uint64_t j = ((vaddr / 4096) / 512) % 512;
uint64_t k = (vaddr / 4096) % 512;
return
i < 512 && p1s[i] != 0 && p1s[i][j] != 0 &&
p1s[i][j][k] != 0 && p1es_to_free_on_exit[i][j][k];
}
uint64_t app_instance::get_free_vaddr_pages(uint64_t count) {
uint64_t start = 0x200000 / 4096;
uint64_t length = 0;
while (start + length <= 0x8000000000 / 4096) {
if (length == count)
return start * 4096;
int i = ((start + length) / 512) / 512;
int j = ((start + length) / 512) % 512;
int k = (start + length) % 512;
if (p1s[i] == 0 || p1s[i][j] == 0 || p1s[i][j][k] == 0)
++length;
else {
start += length + 1;
length = 0;
}
}
//TODO: handle out of memory
return 0;
}
uint64_t app_instance::count_mapped_vram_pages() {
uint64_t count = 0;
for (int i = 0; i < 512; ++i)
if (p1s[i] != 0)
for (int j = 0; j < 512; ++j)
if (p1s[i][j] != 0)
for (int k = 0; k < 512; ++k)
if (p1s[i][j][k] != 0)
++count;
return count;
}
app_instance *running_app;
static uint8_t correct_magic[16] = {
0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00,
0x02, 0x00, 0x3e, 0x00, 0x01, 0x00, 0x00, 0x00
};
#define READ(a, b, c) \
{ \
storage::fs_result _result = file.read_file(a, b, c); \
if (_result == storage::fs_result::device_error) \
return create_app_result::device_error; \
if (_result == storage::fs_result::fs_corrupt) \
return create_app_result::fs_corrupt; \
}
struct load_info {
uint64_t foffset;
uint64_t fsize;
uint64_t vaddr;
uint64_t vpages;
bool writable;
bool executable;
};
create_app_result create_app(
const vfile::vfile &file, app_instance *&out,
const vfile::vfile &working_dir
) {
uint8_t magic[16];
if (file.dir_entry.length < 64)
return create_app_result::app_corrupt;
READ(0, 8, magic)
READ(16, 8, magic + 8)
for (int i = 0; i < 16; ++i)
if (magic[i] != correct_magic[i])
return create_app_result::app_corrupt;
uint64_t entry_point;
uint64_t phead_start;
uint16_t phead_entry_size;
uint16_t phead_entry_count;
READ(24, 8, &entry_point)
READ(32, 8, &phead_start)
READ(54, 2, &phead_entry_size)
READ(56, 2, &phead_entry_count)
if (file.dir_entry.length <
phead_start + phead_entry_size * phead_entry_count)
return create_app_result::app_corrupt;
utility::vector<load_info> load_infos;
for (uint16_t i = 0; i < phead_entry_count; ++i) {
uint64_t entry_start = phead_start + phead_entry_size * i;
uint32_t seg_type;
READ(entry_start, 4, &seg_type)
if (seg_type != 1)
continue;
uint64_t foffset;
uint64_t vaddr;
uint64_t fsize;
uint64_t vsize;
uint32_t flags;
READ(entry_start + 8, 8, &foffset)
READ(entry_start + 16, 8, &vaddr)
READ(entry_start + 32, 8, &fsize)
READ(entry_start + 40, 8, &vsize)
READ(entry_start + 4, 4, &flags)
if (vaddr & 4095)
return create_app_result::app_corrupt;
if (file.dir_entry.length < foffset + fsize)
return create_app_result::app_corrupt;
if (fsize > vsize)
return create_app_result::app_corrupt;
if (vaddr < 0x200000)
return create_app_result::app_corrupt;
uint64_t vpages = (vsize - 1) / 4096 + 1;
if (vaddr + vpages * 4096 > 0x8000000000)
return create_app_result::app_corrupt;
load_info info = {
.foffset = foffset,
.fsize = fsize,
.vaddr = vaddr,
.vpages = vpages,
.writable = (flags & 2) == 2,
.executable = (flags & 1) == 1
};
load_infos.add_end(info);
}
out = new app_instance();
for (unsigned i = 0; i < load_infos.count; ++i) {
const auto &info = load_infos.buffer[i];
for (uint64_t j = 0; j < info.vpages; ++j) {
uint64_t paddr = paging::take_pram_page();
out->map_page(info.vaddr + j * 4096, paddr,
info.writable, info.executable, true);
uint64_t kvaddr = paging::find_unmapped_vram_region(1);
paging::map_kernel_page(paddr, kvaddr, true, false);
storage::fs_result result = storage::fs_result::success;
if (info.fsize > j * 4096) {
if (info.fsize >= j * 4096 + 4096)
result = file.read_file(
info.foffset + j * 4096, 4096, (void *)kvaddr);
else {
int to_read = info.fsize - j * 4096;
result = file.read_file(
info.foffset + j * 4096, to_read, (void *)kvaddr);
uint8_t *blank = (uint8_t *)(kvaddr + to_read);
for (int i = 0; i < 4096 - to_read; ++i)
blank[i] = 0;
}
}
else {
uint8_t *blank = (uint8_t *)kvaddr;
for (int i = 0; i < 4096; ++i)
blank[i] = 0;
}
paging::unmap_kernel_page(kvaddr);
if (result == storage::fs_result::device_error) {
delete out;
return create_app_result::device_error;
}
if (result == storage::fs_result::fs_corrupt) {
delete out;
return create_app_result::fs_corrupt;
}
}
}
for (uint64_t vaddr = 0x1000; vaddr < 0x1ff000; vaddr += 4096) {
uint64_t paddr = paging::take_pram_page();
uint64_t kvaddr = paging::find_unmapped_vram_region(1);
paging::map_kernel_page(paddr, kvaddr, true, false);
uint8_t *p = (uint8_t *)kvaddr;
for (int i = 0; i < 4096; ++i)
p[i] = 0;
paging::unmap_kernel_page(kvaddr);
out->map_page(vaddr, paddr, true, false, true);
}
out->saved_regs.rsp = 0x1ff000;
out->saved_regs.rip = entry_point;
out->working_dir = working_dir;
return create_app_result::success;
}
}