FAT16 directory enumeration, making many functions static, new 'log' functions to wrap vga and serial

This commit is contained in:
Benji Dial 2020-08-13 23:59:14 -04:00
parent 2ddbeb9f72
commit 7ff724fe8f
19 changed files with 434 additions and 251 deletions

1
fs-skel/test.txt Normal file
View file

@ -0,0 +1 @@
blah

View file

@ -39,7 +39,9 @@ kernel:
gcc ${kgccargs} -c src/kernel/drive.c -o obj/kernel/drive.o
gcc ${kgccargs} -c src/kernel/fat.c -o obj/kernel/fat.o
gcc ${kgccargs} -c src/kernel/ide.c -o obj/kernel/ide.o
gcc ${kgccargs} -c src/kernel/log.c -o obj/kernel/log.o
gcc ${kgccargs} -c src/kernel/main.c -o obj/kernel/main.o
gcc ${kgccargs} -c src/kernel/main2.c -o obj/kernel/main2.o
gcc ${kgccargs} -c src/kernel/mem.c -o obj/kernel/mem.o
gcc ${kgccargs} -c src/kernel/panic.c -o obj/kernel/panic.o
gcc ${kgccargs} -c src/kernel/pci.c -o obj/kernel/pci.o
@ -47,7 +49,6 @@ kernel:
gcc ${kgccargs} -c src/kernel/serial.c -o obj/kernel/serial.o
gcc ${kgccargs} -c src/kernel/task.c -o obj/kernel/task.o
gcc ${kgccargs} -c src/kernel/util.c -o obj/kernel/util.o
gcc ${kgccargs} -c src/kernel/vesa.c -o obj/kernel/vesa.o
gcc ${kgccargs} -c src/kernel/vga.c -o obj/kernel/vga.o
ld -T src/kernel/elf-link.ld obj/kernel/*.o -o obj/kernel.elf
objcopy -O binary obj/kernel.elf out/kernel.bin

View file

@ -7,11 +7,10 @@ kernel_segment equ 0x3000
support_flags equ 0x4000
pci_hw_char equ 0x4001
pci_ver equ 0x4002
last_pci_bus equ 0x4004
pci_support equ 0x80
vesa_segment equ 0x0420
in al, 0x92
or al, 0x02
out 0x92, al
@ -44,19 +43,9 @@ vesa_segment equ 0x0420
mov byte [support_flags], pci_support
mov byte [pci_hw_char], al
mov word [pci_ver], bx
mov byte [last_pci_bus], cl
no_pci:
mov dword [vesa_segment * 16], 'V' + 'B' * 256 + 'E' * 65535 + '2' * 16777216
mov ax, vesa_segment
mov es, ax
xor di, di
mov ax, 0x4f00
int 0x10
cmp ax, 0x004f
jne no_vbe
cli
lgdt [gdt]
@ -67,15 +56,6 @@ no_pci:
jmp 0x08:pmode
no_vbe:
;TODO
cli
real_halt:
hlt
jmp real_halt
bits 32
pmode:

View file

@ -5,23 +5,34 @@
uint8_t n_drives = 0;
struct drive drives[256];
__attribute__ ((const)) drive_file_id_t unknown_get_file(const struct drive *d, const char *path) {
__attribute__ ((const))
static drive_file_id_t unknown_get_file(const struct drive *d, const char *path) {
return 0;
}
void unknown_free_file(const struct drive *d, drive_file_id_t fid) {
static void unknown_free_file(const struct drive *d, drive_file_id_t fid) {
panic("Free file called on unknown file system");
}
void unknown_load_sector(const struct drive *d, drive_file_id_t fid, uint32_t sector, void *at) {
static void unknown_load_sector(const struct drive *d, drive_file_id_t fid, uint32_t sector, void *at) {
panic("Load sector called on unknown file system");
}
__attribute__ ((const)) uint32_t unknown_get_free_sectors(const struct drive *d) {
static uint32_t unknown_get_file_length(const struct drive *d, drive_file_id_t fid) {
panic("Get file length called on unknown file system");
}
__attribute__ ((const))
static uint32_t unknown_get_free_sectors(const struct drive *d) {
return -1;
}
void determine_fs(struct drive *d) {
__attribute__ ((const))
static uint32_t unknown_enumerate_dir(const struct drive *d, const char *path, struct directory_content_info *info, uint32_t max) {
return 0;
}
static void determine_fs(struct drive *d) {
if (try_fat_init_drive(d))
return;
@ -29,6 +40,8 @@ void determine_fs(struct drive *d) {
d->get_file = &unknown_get_file;
d->free_file = &unknown_free_file;
d->load_sector = &unknown_load_sector;
d->get_file_length = &unknown_get_file_length;
d->enumerate_dir = &unknown_enumerate_dir;
d->get_free_sectors = &unknown_get_free_sectors;
}

View file

@ -1,6 +1,7 @@
#ifndef DRIVE_H
#define DRIVE_H
#include <stdbool.h>
#include <stdint.h>
typedef uint8_t drive_file_id_t;
@ -9,19 +10,28 @@ typedef uint8_t fs_id_t;
typedef uint8_t drive_id_t;
#define MAX_DRIVES 256
#define DCI_NAME_LEN 100
struct directory_content_info {
bool is_dir;
char name[DCI_NAME_LEN];
uint32_t size;
};
struct drive {
char *drive_type;
char *fs_type;
uint8_t (*read_sectors)(const struct drive *d, uint32_t start, uint32_t count, void *buffer);
uint8_t (*read_sectors) (const struct drive *d, uint32_t start, uint32_t count, void *buffer);
uint8_t (*write_sectors)(const struct drive *d, uint32_t start, uint32_t count, const void *buffer);
uint32_t n_sectors;
drive_id_t drive_id;
drive_file_id_t (*get_file)(const struct drive *d, const char *path);
void (*free_file)(const struct drive *d, drive_file_id_t fid);
void (*load_sector)(const struct drive *d, drive_file_id_t fid, uint32_t sector, void *at);
drive_file_id_t (*get_file) (const struct drive *d, const char *path);
void (*free_file) (const struct drive *d, drive_file_id_t fid);
void (*load_sector) (const struct drive *d, drive_file_id_t fid, uint32_t sector, void *at);
uint32_t (*get_file_length) (const struct drive *d, drive_file_id_t fid);
uint32_t (*enumerate_dir) (const struct drive *d, const char *path, struct directory_content_info *info, uint32_t max);
uint32_t (*get_free_sectors)(const struct drive *d);
fs_id_t fs_id;
};

View file

@ -8,6 +8,9 @@
#define MAX_FAT_DRIVES 16
#define MAX_OPEN_FILES_PER_DRIVE 32
#define PATH_SEP_CHAR '/'
#define EXT_SEP_CHAR '.'
enum {
FA_READ_ONLY = 0x01,
FA_HIDDEN = 0x02,
@ -59,33 +62,44 @@ struct fat_info {
#define CTOS(c, fdi) ((fdi)->data_start + (c) - 2)
struct open_file_info {
//directory entry is the di_number'th entry in the di_sector'th sector
//di_sector of 0 indicates an unused handle
uint32_t di_sector;
uint8_t di_number;
uint16_t start_cluster;
uint32_t length;
};
struct fat_drive_info {
const struct fat_info *fi;
uint16_t *fat;
uint16_t root_start;
uint16_t data_start;
struct directory_entry open_files[MAX_OPEN_FILES_PER_DRIVE];
struct open_file_info open_files[MAX_OPEN_FILES_PER_DRIVE];
};
struct fat_drive_info infos[MAX_FAT_DRIVES];
uint8_t next_id = 0;
static struct fat_drive_info infos[MAX_FAT_DRIVES];
static uint8_t next_id = 0;
uint8_t fat_driver_buffer[512];
struct fat_info *next_fi;
static uint8_t fat_driver_buffer[512];
static struct fat_info *next_fi;
void alloc_next_fi() {
static void alloc_next_fi() {
if (!((uint32_t)(next_fi = (struct fat_info *)((uint32_t)next_fi + 64)) & 0xfff))
if (!(next_fi = allocate_pages(1)))
panic("Out of memory in FAT driver.");
}
const struct drive *cur_drive;
fs_id_t cur_id;
const struct fat_drive_info *cur_fdi;
struct directory_entry *cur_dir;
static const struct drive *cur_drive;
static fs_id_t cur_id;
static const struct fat_drive_info *cur_fdi;
static struct directory_entry *cur_dir;
static uint32_t cur_sect;
//loads cluster `c`
void load_cluster(uint16_t c, void *to) {
static void load_cluster(uint16_t c, void *to) {
if (c == 0) {
*(uint8_t *)to = 0;
return;
@ -95,26 +109,29 @@ void load_cluster(uint16_t c, void *to) {
cur_drive->read_sectors(cur_drive, s, 1, to);
}
uint16_t next_cluster(uint16_t c) {
static uint16_t next_cluster(uint16_t c) {
panic("TODO: compute next sector (or 0 for none)");
}
static const uint8_t this_dir[] = {'.', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '};
static const uint8_t parent_dir[] = {'.', '.', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '};
static inline bool check_fat_names(const uint8_t *a, const uint8_t *b) {
return (((uint32_t *)a)[0] == ((uint32_t *)b)[0]) &&
(((uint32_t *)a)[1] == ((uint32_t *)b)[1]) &&
(((uint16_t *)a)[8] == ((uint16_t *)b)[8]) &&
(((uint16_t *)a)[4] == ((uint16_t *)b)[4]) &&
(((uint8_t *)a)[10] == ((uint8_t *)b)[10]);
}
//after: cur_dir -> specified entry in root
bool try_locate_root_entry(const uint8_t *fat_name) {
uint32_t cur_dir_sect = cur_fdi->root_start - 1;
static bool try_locate_root_entry(const uint8_t *fat_name) {
cur_sect = cur_fdi->root_start - 1;
cur_dir = (struct directory_entry *)(fat_driver_buffer + 512);
while (true) {
if (cur_dir == (struct directory_entry *)(fat_driver_buffer + 512)) {
cur_dir = (struct directory_entry *)fat_driver_buffer;
++cur_dir_sect;
cur_drive->read_sectors(cur_drive, cur_dir_sect, 1, cur_dir);
++cur_sect;
cur_drive->read_sectors(cur_drive, cur_sect, 1, cur_dir);
}
if (!*(uint8_t *)cur_dir)
return false;
@ -127,53 +144,109 @@ bool try_locate_root_entry(const uint8_t *fat_name) {
//before: cur_dir -> entry of dir to search
//after: cur_dir -> specified entry in dir
bool try_locate_entry(const uint8_t *fat_name) {
static bool try_locate_entry(const uint8_t *fat_name) {
uint16_t cur_dir_cluster = cur_dir->first_cluster;
load_cluster(cur_dir_cluster, fat_driver_buffer);
cur_dir = (struct directory_entry *)fat_driver_buffer;
while (true) {
if (cur_dir == (struct directory_entry *)(fat_driver_buffer + 512)) {
cur_dir = (struct directory_entry *)fat_driver_buffer;
++cur_dir_cluster;
load_cluster(cur_dir_cluster = next_cluster(cur_dir_cluster), fat_driver_buffer);
}
if (!*(uint8_t *)cur_dir)
return false;
if (check_fat_names(cur_dir -> name, fat_name))
if (check_fat_names(cur_dir->name, fat_name)) {
cur_sect = CTOS(cur_dir_cluster, cur_fdi);
return true;
}
else
++cur_dir;
}
}
drive_file_id_t fat_get_file(const struct drive *d, const char *path) {
//puts first path component's fat name into fat_name_buffer,
//returns rest of path
static const char *split_path(const char *path, uint8_t *fat_name_buffer) {
uint8_t pi = 0, fi = 0;
while (1) {
if ((path[pi] == PATH_SEP_CHAR) || !path[pi]) {
while (fi != 11)
fat_name_buffer[fi++] = (uint8_t)' ';
return path + (path[pi] ? pi + 1 : pi);
}
if (path[pi] == EXT_SEP_CHAR)
if (fi <= 8) {
while (fi != 8)
fat_name_buffer[fi++] = (uint8_t)' ';
++pi;
}
else
panic("Bad path in FAT16 driver");
else if ((fi == 8) || (fi == 11))
panic("Bad path in FAT16 driver");
else {
fat_name_buffer[fi++] = (uint8_t)path[pi++];
}
}
}
//cur_dir -> specified entry
static bool try_load_from_path(const struct drive *d, const char *path) {
cur_drive = d;
cur_id = d->drive_id;
cur_fdi = &infos[cur_id];
const struct directory_entry *open_files = cur_fdi->open_files - 1;
uint8_t fat_name[11];
path = split_path(path, fat_name);
if (!try_locate_root_entry(fat_name))
return false;
while (*path) {
path = split_path(path, fat_name);
if (!try_locate_entry(fat_name))
return false;
}
return true;
}
static drive_file_id_t fat_get_file(const struct drive *d, const char *path) {
struct open_file_info *open_files = infos[d->drive_id].open_files - 1;
for (drive_file_id_t n = 1; n != MAX_OPEN_FILES_PER_DRIVE + 1; ++n)
if (!*(uint8_t *)(&open_files[n])) {
panic("TODO: open path into open_files[n]");
if (!open_files[n].di_sector) {
if (!try_load_from_path(d, path))
return 0;
open_files[n].di_sector = cur_sect;
open_files[n].di_number = cur_dir - (struct directory_entry *)fat_driver_buffer;
open_files[n].start_cluster = cur_dir->first_cluster;
open_files[n].length = cur_dir->length;
return n;
}
panic("Maximum number of files open reached for FAT drive.");
}
void fat_free_file(const struct drive *d, drive_file_id_t fid) {
*(uint8_t *)(&infos[d->drive_id].open_files[fid - 1]) = 0;
static void fat_free_file(const struct drive *d, drive_file_id_t fid) {
infos[d->drive_id].open_files[fid - 1].di_sector = 0;
}
void fat_load_sector(const struct drive *d, drive_file_id_t fid, uint32_t sector, void *at) {
static void fat_load_sector(const struct drive *d, drive_file_id_t fid, uint32_t sector, void *at) {
cur_drive = d;
cur_id = d->drive_id;
cur_fdi = &infos[cur_id];
uint16_t c = cur_fdi->open_files[fid - 1].first_cluster;
uint16_t c = cur_fdi->open_files[fid - 1].start_cluster;
for (uint32_t i = 0; i < sector; ++i)
c = next_cluster(c);
load_cluster(c, at);
}
__attribute__ ((pure)) uint32_t fat_get_free_sectors(const struct drive *d) {
__attribute__ ((pure))
static uint32_t fat_get_file_length(const struct drive *d, drive_file_id_t fid) {
return infos[d->drive_id].open_files[fid - 1].length;
}
__attribute__ ((pure))
static uint32_t fat_get_free_sectors(const struct drive *d) {
uint16_t *start = infos[d->fs_id].fat + 2;
uint16_t *end = start + d->n_sectors - infos[d->fs_id].data_start;
uint32_t count = 0;
@ -183,6 +256,90 @@ __attribute__ ((pure)) uint32_t fat_get_free_sectors(const struct drive *d) {
return count;
}
static void fat_name_to_path(const uint8_t *fat_name, char *path) {
uint8_t last_visible = -1;
for (uint8_t i = 0; i < 8; ++i) {
if (fat_name[i] != (uint8_t)' ')
last_visible = i;
path[i] = (char)fat_name[i];
}
if (fat_name[8] || fat_name[9] || fat_name[10]) {
path[last_visible + 1] = EXT_SEP_CHAR;
for (uint8_t fi = 8, ti = last_visible + 2; fi < 11; ++fi, ++ti) {
if (fat_name[fi] != (uint8_t)' ')
last_visible = ti;
path[ti] = (char)fat_name[fi];
}
}
path[last_visible + 1] = '\0';
}
static uint32_t enumerate_root(const struct drive *d, struct directory_content_info *info, uint32_t max) {
uint32_t sect = infos[d->drive_id].root_start - 1;
struct directory_entry *entry = (struct directory_entry *)(fat_driver_buffer + 512);
struct directory_content_info *fill = info;
while (true) {
if (entry == (struct directory_entry *)(fat_driver_buffer + 512)) {
entry = (struct directory_entry *)fat_driver_buffer;
++sect;
d->read_sectors(d, sect, 1, entry);
}
if (!*(uint8_t *)entry || (info == fill + max))
return fill - info;
if (entry-> attrib & FA_LABEL) {
++entry;
continue;
}
fill->is_dir = entry->attrib & FA_DIRECTORY;
fill->size = entry->length;
fat_name_to_path(entry->name, fill->name);
++entry;
++fill;
}
}
static uint32_t fat_enumerate_dir(const struct drive *d, const char *path, struct directory_content_info *info, uint32_t max) {
if (!*path)
return enumerate_root(d, info, max);
if (!try_load_from_path(d, path))
return 0;
uint16_t cluster = cur_dir->first_cluster;
load_cluster(cluster, fat_driver_buffer);
struct directory_entry *entry = (struct directory_entry *)fat_driver_buffer;
struct directory_content_info *fill = info;
while (true) {
if (entry == (struct directory_entry *)(fat_driver_buffer + 512)) {
entry = (struct directory_entry *)fat_driver_buffer;
load_cluster(cluster = next_cluster(cluster), fat_driver_buffer);
}
if (!*(uint8_t *)entry || (fill == info + max))
return fill - info;
if (check_fat_names(entry->name, this_dir) || check_fat_names(entry->name, parent_dir)) {
++entry;
continue;
}
fill->is_dir = entry->attrib & FA_DIRECTORY;
fill->size = entry->length;
fat_name_to_path(entry->name, fill->name);
++entry;
++fill;
}
}
void init_fat() {
next_fi = allocate_pages(1);
}
@ -203,6 +360,8 @@ bool try_fat_init_drive(struct drive *d) {
d->get_file = &fat_get_file;
d->free_file = &fat_free_file;
d->load_sector = &fat_load_sector;
d->get_file_length = &fat_get_file_length;
d->enumerate_dir = &fat_enumerate_dir;
d->get_free_sectors = &fat_get_free_sectors;
d->fs_id = next_id;
@ -214,9 +373,9 @@ bool try_fat_init_drive(struct drive *d) {
((next_fi->root_entries - 1) >> 4) + 1;
d->read_sectors(d, next_fi->reserved_sectors, next_fi->sectors_per_fat, infos[next_id].fat);
struct directory_entry *open_files = infos[next_id].open_files - 1;
struct open_file_info *open_files = infos[next_id].open_files - 1;
for (drive_file_id_t i = 0; i < MAX_OPEN_FILES_PER_DRIVE; ++i)
*(uint8_t *)&open_files[i] = 0;
open_files[i].di_sector = 0;
alloc_next_fi();
++next_id;

View file

@ -14,25 +14,13 @@ struct ide_drive_info {
bool slave;
};
struct ide_drive_info ide_drives[MAX_IDE_DRIVES];
drive_id_t n_ide_drives = 0;
static struct ide_drive_info ide_drives[MAX_IDE_DRIVES];
static drive_id_t n_ide_drives = 0;
typedef uint16_t spinner_t;
//returns the status after waiting
uint8_t wait_after_cmd(uint16_t base_port) {
for (spinner_t n = -1; n; --n) {
uint8_t s = inb(base_port | ATA_REG_STATUS);
if (s & ATA_STATUS_ERROR)
panic("Error status in IDE driver.");
if (!(s & ATA_STATUS_BUSY))
return s;
}
panic("Spun out in IDE driver.");
}
//returns the status after waiting
uint8_t wait_for_ready(uint16_t base_port) {
static uint8_t wait_for_ready(uint16_t base_port) {
for (spinner_t n = -1; n; --n) {
uint8_t s = inb(base_port | ATA_REG_STATUS);
if (s & ATA_STATUS_ERROR)
@ -44,7 +32,7 @@ uint8_t wait_for_ready(uint16_t base_port) {
}
//returns the status after waiting
uint8_t wait_for_error_or_ready(uint16_t base_port) {
static uint8_t wait_for_error_or_ready(uint16_t base_port) {
for (spinner_t n = -1; n; --n) {
uint8_t s = inb(base_port | ATA_REG_STATUS);
if (s & (ATA_STATUS_DRIVE_READY | ATA_STATUS_ERROR))
@ -54,7 +42,7 @@ uint8_t wait_for_error_or_ready(uint16_t base_port) {
}
//returns the status after waiting
uint8_t wait_for_data_ready_not_busy(uint16_t base_port) {
static uint8_t wait_for_data_ready_not_busy(uint16_t base_port) {
for (spinner_t n = -1; n; --n) {
uint8_t s = inb(base_port | ATA_REG_STATUS);
if (!(s & ATA_STATUS_BUSY) && (s & ATA_STATUS_DATA_READY))
@ -65,7 +53,7 @@ uint8_t wait_for_data_ready_not_busy(uint16_t base_port) {
panic("Spun out in IDE driver.");
}
uint8_t ide_ata_rs(const struct drive *d, uint32_t start, uint32_t count, void *buffer) {
static uint8_t ide_ata_rs(const struct drive *d, uint32_t start, uint32_t count, void *buffer) {
if (start >= d->n_sectors)
return 0;
if (start + count > d->n_sectors)
@ -103,17 +91,17 @@ uint8_t ide_ata_rs(const struct drive *d, uint32_t start, uint32_t count, void *
return count;
}
uint8_t ide_ata_ws(const struct drive *d, uint32_t start, uint32_t count, const void *buffer) {
static uint8_t ide_ata_ws(const struct drive *d, uint32_t start, uint32_t count, const void *buffer) {
panic("IDE ATA writing not implemented yet");
return 0;
}
uint8_t ide_atapi_rs(const struct drive *d, uint32_t start, uint32_t count, void *buffer) {
static uint8_t ide_atapi_rs(const struct drive *d, uint32_t start, uint32_t count, void *buffer) {
//panic("IDE ATAPI reading not implemented yet");
return 0;
}
uint8_t ide_atapi_ws(const struct drive *d, uint32_t start, uint32_t count, const void *buffer) {
static uint8_t ide_atapi_ws(const struct drive *d, uint32_t start, uint32_t count, const void *buffer) {
panic("IDE ATAPI writing not implemented yet");
return 0;
}
@ -124,9 +112,7 @@ struct id_space {
uint8_t skip2[512 - (120 + 4)];
} __attribute__ ((__packed__ ));
void vga_printsz(char *s);
void test_drive(uint16_t base_port, uint16_t alt_port, bool slave) {
static void test_drive(uint16_t base_port, uint16_t alt_port, bool slave) {
if (n_ide_drives == MAX_IDE_DRIVES)
panic("Maximum number of IDE drives reached.");

25
src/kernel/log.c Normal file
View file

@ -0,0 +1,25 @@
#include "vga.h"
#include "serial.h"
#define INFO_COM COM1
void init_log() {
vga_set_color(0x2f);
vga_blank();
}
void logch(char ch) {
if (ch == '\n') {
sout(INFO_COM, (uint8_t)'\r');
sout(INFO_COM, (uint8_t)'\n');
}
else
sout(INFO_COM, (uint8_t)ch);
vga_printch(ch);
}
void logsz(const char *sz) {
while (*sz)
logch(*sz++);
}

9
src/kernel/log.h Normal file
View file

@ -0,0 +1,9 @@
#ifndef LOG_H
#define LOG_H
void init_log();
void logch(char ch);
void logsz(const char *sz);
#endif

View file

@ -3,55 +3,56 @@
#include "panic.h"
#include "boot.h"
#include "util.h"
#include "vesa.h"
#include "fat.h"
#include "ide.h"
#include "mem.h"
#include "pci.h"
#include "vga.h"
#include "log.h"
__attribute__ ((noreturn)) void main() {
void tree(struct drive *d);
__attribute__ ((noreturn))
void main() {
char nbuf[11];
init_mmap();
init_vesa();
init_serial();
init_log();
vga_blank();
vga_printsz("Portland v0.0.11\n\n");
logsz("Portland v0.0.11\n\n");
//list vesa modes?
pci_init();
u16_dec(n_pci_devices, nbuf);
vga_printsz(nbuf);
vga_printsz(" PCI device(s) found:\n");
logsz(nbuf);
logsz(" PCI device(s) found:\n");
for (uint16_t n = 0; n < n_pci_devices; ++n) {
struct pci_device *pd = nth_pci_device(n);
u16_hex(pd->number, nbuf);
vga_printsz(" ");
vga_printsz(nbuf);
vga_printsz(": ");
logsz(" ");
logsz(nbuf);
logsz(": ");
u16_hex(pd->id_vendor, nbuf);
nbuf[4] = '.';
u16_hex(pd->id_device, nbuf + 5);
vga_printsz(nbuf);
logsz(nbuf);
u8_hex(pd->class, nbuf);
nbuf[2] = '.';
u8_hex(pd->subclass, nbuf + 3);
nbuf[5] = '.';
u8_hex(pd->iface, nbuf + 6);
vga_printsz(" (");
vga_printsz(nbuf);
vga_printsz(")\n");
logsz(" (");
logsz(nbuf);
logsz(")\n");
}
vga_printch('\n');
logch('\n');
init_fat();
//other fs drivers
@ -60,49 +61,49 @@ __attribute__ ((noreturn)) void main() {
//other drive drivers
u8_dec(n_drives, nbuf);
vga_printsz(nbuf);
vga_printsz(" drive(s) found:\n");
logsz(nbuf);
logsz(" drive(s) found:\n");
for (uint8_t n = 0; n < n_drives; ++n) {
struct drive *d = drives + n;
u8_dec(n, nbuf);
vga_printsz(" sd");
vga_printsz(nbuf);
vga_printsz(" (");
vga_printsz(d->drive_type);
vga_printsz(", ");
logsz(" sd");
logsz(nbuf);
logsz(" (");
logsz(d->drive_type);
logsz(", ");
u32_dec(d->n_sectors / 2, nbuf);
vga_printsz(nbuf);
logsz(nbuf);
if (d->n_sectors % 2)
vga_printsz(".5");
vga_printsz("k): ");
logsz(".5");
logsz("k): ");
vga_printsz(d->fs_type);
logsz(d->fs_type);
uint32_t free_sectors = d->get_free_sectors(d);
if (free_sectors != -1) {
u32_dec(free_sectors / 2, nbuf);
vga_printsz(", ");
vga_printsz(nbuf);
logsz(", ");
logsz(nbuf);
if (free_sectors % 2)
vga_printsz(".5");
vga_printsz("k free");
logsz(".5");
logsz("k free");
}
vga_printsz(".\n");
logsz(".\n");
}
vga_printch('\n');
logch('\n');
u32_dec(pages_left * 4, nbuf);
vga_printsz(nbuf);
vga_printsz("k dynamic memory free.\n\n");
logsz(nbuf);
logsz("k dynamic memory free.\n\n");
vga_printsz("Loading init process.");
logsz("sd0 root:\n");
tree(&drives[0]);
vga_printsz("\n\nTODO: load and switch to init process");
while (1)
asm ("hlt");
}

59
src/kernel/main2.c Normal file
View file

@ -0,0 +1,59 @@
#include <stdint.h>
#include "drive.h"
#include "util.h"
#include "log.h"
static char nbuf2[11];
static char path_builder[200] = "";
static uint8_t path_builder_len = 0;
static char indent_builder[20] = " ";
static uint8_t indent_builder_len = 2;
void tree(struct drive *d) {
struct directory_content_info infos[100];
uint8_t n_infos = d->enumerate_dir(d, path_builder, infos, 100);
if (!n_infos) {
logsz(indent_builder);
logsz("(empty)\n");
return;
}
for (uint8_t i = 0; i < n_infos; ++i) {
logsz(indent_builder);
logsz(infos[i].name);
if (infos[i].is_dir) {
logsz(":\n");
indent_builder[indent_builder_len] = ' ';
indent_builder[indent_builder_len + 1] = ' ';
indent_builder[indent_builder_len + 2] = '\0';
indent_builder_len += 2;
uint8_t name_length = 0;
while (infos[i].name[name_length])
++name_length;
memcpy(path_builder + path_builder_len, infos[i].name, name_length + 1);
path_builder_len += name_length;
tree(d);
path_builder_len -= name_length;
path_builder[path_builder_len] = '\0';
indent_builder_len -= 2;
indent_builder[indent_builder_len] = '\0';
}
else {
u32_dec(infos[i].size, nbuf2);
logsz(" (");
logsz(nbuf2);
logsz(" bytes)\n");
}
}
}

View file

@ -1,12 +1,13 @@
#include "panic.h"
#include "log.h"
#include "vga.h"
void panic(const char *message) {
vga_set_color(0x4f);
vga_blank();
vga_printsz("Kernel panic: ");
vga_printsz(message);
vga_printsz("\nHalting.");
logsz("Kernel panic: ");
logsz(message);
logsz("\nHalting.");
while (1)
asm volatile ("hlt");
}

View file

@ -10,7 +10,7 @@ enum {
};
uint16_t n_pci_devices = 0;
struct pci_device *pci_device_pages[256];
static struct pci_device *pci_device_pages[256];
#define PCI_DEVICES_PER_PAGE (4096 / sizeof(struct pci_device))
@ -29,20 +29,21 @@ struct pci_device *find_pci_device_from_class_and_subclass(uint8_t class, uint8_
return 0;
}
struct pci_device *next_pci_device() {
static struct pci_device *next_pci_device() {
if (!(n_pci_devices % PCI_DEVICES_PER_PAGE))
pci_device_pages[n_pci_devices / PCI_DEVICES_PER_PAGE] = allocate_pages(1);
if (!(pci_device_pages[n_pci_devices / PCI_DEVICES_PER_PAGE] = allocate_pages(1)))
panic("Out of memory in PCI enumeration");
return nth_pci_device(n_pci_devices++);
}
static inline uint32_t pci_read_config(uint16_t number, uint8_t reg) {
static uint32_t pci_read_config(uint16_t number, uint8_t reg) {
uint32_t cspace_addr = 0x80000000 | (number << 8) | (reg << 2);
outd(PCP_SELECT, cspace_addr);
return ind(PCP_READ);
}
void pci_device_check(uint16_t number) {
static void pci_device_check(uint16_t number) {
uint32_t id = pci_read_config(number, 0);
if ((id & 0xffff) == 0xffff)
return;

View file

@ -48,54 +48,47 @@ enum {
CLS_READ = 0x01
};
bool error;
#define SERIAL_SPIN_LIMIT 65535
static const uint16_t ports[] = {
CP_1, CP_2, CP_3, CP_4
};
bool serr() {
return error;
static bool error[] = {
false, false, false, false
};
void reset_error(enum serial_port n) {
error[n] = false;
}
void init_serial() {
error = false;
outb(CP_1 | CP_INT, 0);
outb(CP_1 | CP_LINE, CL_BAUD);
outb(CP_1 | CP_DIVLOW, 0x03);//38400
outb(CP_1 | CP_DIVHIGH, 0x00);//baud
outb(CP_1 | CP_LINE, CL_8BIT);
outb(CP_1 | CP_FIFO, 0xc7);//?
for (enum serial_port i = COM1; i <= COM4; ++i) {
outb(ports[i] | CP_INT, 0);
outb(ports[i] | CP_LINE, CL_BAUD);
outb(ports[i] | CP_DIVLOW, 0x03);//38400
outb(ports[i] | CP_DIVHIGH, 0x00);//baud
outb(ports[i] | CP_LINE, CL_8BIT);
outb(ports[i] | CP_FIFO, 0xc7);//?
}
}
void sout(char b) {
if (error)
typedef uint16_t serial_spin_t;
void sout(enum serial_port n, uint8_t b) {
if (error[n])
return;
uint16_t s = SERIAL_SPIN_LIMIT;
while (!(inb(CP_1 | CP_LINE_S) & CLS_WRITE))
if (!--s) {
error = true;
serial_spin_t spinner = -1;
while (!(inb(ports[n] | CP_LINE_S) & CLS_WRITE))
if (--spinner) {
error[n] = true;
return;
}
outb(CP_1 | CP_DATA, (uint8_t)b);
outb(ports[n] | CP_DATA, b);
}
void soutsz(const char *s) {
while (*s)
sout(*(s++));
}
void soutsn(const char *s, uint8_t n) {
while (n--)
sout(*(s++));
}
char sin() {
if (error)
uint8_t sin(enum serial_port n) {
if (error[n])
return 0;
while (!(inb(CP_1 | CP_LINE_S) & CLS_READ))
while (!(inb(ports[n] | CP_LINE_S) & CLS_READ))
;//spin
return (char)inb(CP_1 | CP_DATA);
}
void sinsn(char *s, uint8_t n) {
while (n--)
*(s++) = sin();
return inb(ports[n] | CP_DATA);
}

View file

@ -1,15 +1,19 @@
#ifndef SERIAL_H
#define SERIAL_H
#include <stdbool.h>
#include <stdint.h>
bool serr() __attribute__ ((pure));
enum serial_port {
COM1,
COM2,
COM3,
COM4
};
void reset_error(enum serial_port n);
void init_serial();
void sout(char b);
void soutsz(const char *s);
void soutsn(const char *s, uint8_t n);
char sin();
void sinsn(char *s, uint8_t n);
void sout(enum serial_port n, uint8_t b);
uint8_t sin(enum serial_port n);
#endif

View file

@ -1,21 +0,0 @@
#include "vesa.h"
uint16_t screen_width;
uint16_t screen_height;
uint8_t bpp;
void *frame_buffer;
void put_pixel(uint16_t x, uint16_t y, color c) {
}
void screen_fill(color c) {
}
void init_vesa() {
// for (void *v = 0; v < 0x65536; ++v) {
// if (*(uint32_t *)v == 'P' + 'M' * 256 + 'I' * 65536 + 'D' * 16777216)
// }
}

View file

@ -1,17 +0,0 @@
#ifndef VESA_H
#define VESA_H
#include <stdint.h>
extern uint16_t screen_width;
extern uint16_t screen_height;
extern uint8_t bpp;
typedef uint32_t color;
void put_pixel(uint16_t x, uint16_t y, color c);
void screen_fill(color c);
void init_vesa();
#endif

View file

@ -1,61 +1,41 @@
#include <stdbool.h>
#include <stdint.h>
#define VGA_COM_MIRROR
#ifdef VGA_COM_MIRROR
#include "serial.h"
#endif
#define VGA_COLUMNS 80
#define VGA_LINES 25
#define VGA_START (uint16_t *)0x000b8000
#define VGA_END (VGA_START + VGA_COLUMNS * VGA_LINES)
uint16_t *cursor = VGA_START;
uint16_t color = 0x1f00;
static uint16_t *cursor = VGA_START;
static uint16_t mask;
void vga_set_color(uint8_t new_color) {
color = new_color << 8;
mask = new_color << 8;
}
void vga_scroll() {
cursor = VGA_START;
for (uint32_t *i = (uint32_t *)VGA_START; i < (uint32_t *)(VGA_END - VGA_COLUMNS); ++i)
*i = *(i + VGA_COLUMNS / 2);
uint32_t f = (mask | (uint8_t)' ') * 0x00010001;
for (uint32_t *i = (uint32_t *)(VGA_END - VGA_COLUMNS); i < (uint32_t *)VGA_END; ++i)
*i++ = f;
cursor -= VGA_COLUMNS;
}
void vga_blank() {
#ifdef VGA_COM_MIRROR
soutsz("\r\n\r\n<CLEAR>\r\n\r\n");
#endif
uint32_t f = (color << 16) | color | 0x00200020;
uint32_t f = (mask | (uint8_t)' ') * 0x00010001;
uint32_t *p = (uint32_t *)VGA_START;
while (p < (uint32_t *)VGA_END)
*(p++) = f;
*p++ = f;
cursor = VGA_START;
}
void vga_printch(char ch) {
if (ch == '\n') {
#ifdef VGA_COM_MIRROR
soutsz("\r\n");
#endif
if ((cursor = cursor - (cursor - VGA_START) % VGA_COLUMNS + VGA_COLUMNS) == VGA_END)
vga_scroll();
return;
}
#ifdef VGA_COM_MIRROR
sout(ch);
#endif
*(cursor++) = color | (uint8_t)ch;
*cursor++ = mask | (uint8_t)ch;
if (cursor == VGA_END)
vga_scroll();
}
void vga_printsz(const char *sz) {
while (*sz)
vga_printch(*(sz++));
}
void vga_printsn(const char *sn, uint8_t n) {
while (n--)
vga_printch(*(sn++));
}

View file

@ -7,7 +7,5 @@ void vga_set_color(uint8_t color);
void vga_blank();
void vga_scroll();
void vga_printch(char ch);
void vga_printsz(const char *sz);
void vga_printsn(const char *sn, uint8_t n);
#endif