#include #include #include //TODO - scheduling. namespace hilbert::kernel::application { process::process() : framebuffer_vaddr(0) { uint64_t p4_vaddr; paging::map_new_kernel_page(p4_vaddr, p4_paddr); p4 = (uint64_t *)p4_vaddr; uint64_t p3_paddr; uint64_t p3_vaddr; paging::map_new_kernel_page(p3_vaddr, p3_paddr); p3 = (uint64_t *)p3_vaddr; for (int i = 1; i < 511; ++i) p4[i] = 0; p4[0] = paging::encode_pte(p3_paddr, true, true, true); p4[511] = paging::kernel_p4e; for (int i = 0; i < 512; ++i) { p3[i] = 0; p2s[i] = 0; p1s[i] = 0; p1es_to_free_on_exit[i] = 0; } } void process::map_page(uint64_t vaddr, uint64_t paddr, bool write, bool execute, bool free_pram_on_exit ) { uint64_t i = ((vaddr / 4096) / 512) / 512; uint64_t j = ((vaddr / 4096) / 512) % 512; uint64_t k = (vaddr / 4096) % 512; if (p2s[i] == 0) { uint64_t p2_paddr; uint64_t p2_vaddr; paging::map_new_kernel_page(p2_vaddr, p2_paddr); p3[i] = paging::encode_pte(p2_paddr, true, true, true); p2s[i] = (uint64_t *)p2_vaddr; p1s[i] = new uint64_t *[512]; p1es_to_free_on_exit[i] = new bool *[512]; for (int u = 0; u < 512; ++u) { p2s[i][u] = 0; p1s[i][u] = 0; p1es_to_free_on_exit[i][u] = 0; } } if (p2s[i][j] == 0) { uint64_t p1_paddr; uint64_t p1_vaddr; paging::map_new_kernel_page(p1_vaddr, p1_paddr); p2s[i][j] = paging::encode_pte(p1_paddr, true, true, true); p1s[i][j] = (uint64_t *)p1_vaddr; p1es_to_free_on_exit[i][j] = new bool[512]; for (int u = 0; u < 512; ++u) { p1s[i][j][u] = 0; p1es_to_free_on_exit[i][j][u] = false; } } p1s[i][j][k] = paging::encode_pte(paddr, true, write, execute); p1es_to_free_on_exit[i][j][k] = free_pram_on_exit; } bool process::is_page_owned(uint64_t vaddr) { uint64_t i = ((vaddr / 4096) / 512) / 512; uint64_t j = ((vaddr / 4096) / 512) % 512; uint64_t k = (vaddr / 4096) % 512; return i < 512 && p1s[i] != 0 && p1s[i][j] != 0 && p1s[i][j][k] != 0 && p1es_to_free_on_exit[i][j][k]; } uint64_t process::get_free_vaddr_pages(uint64_t count) { uint64_t start = 0x200000 / 4096; uint64_t length = 0; while (start + length <= 0x8000000000 / 4096) { if (length == count) return start * 4096; int i = ((start + length) / 512) / 512; int j = ((start + length) / 512) % 512; int k = (start + length) % 512; if (p1s[i] == 0 || p1s[i][j] == 0 || p1s[i][j][k] == 0) ++length; else { start += length + 1; length = 0; } } //TODO: handle out of memory return 0; } uint64_t process::count_mapped_vram_pages() { uint64_t count = 0; for (int i = 0; i < 512; ++i) if (p1s[i] != 0) for (int j = 0; j < 512; ++j) if (p1s[i][j] != 0) for (int k = 0; k < 512; ++k) if (p1s[i][j][k] != 0) ++count; return count; } utility::id_allocator *processes; utility::queue *paused_threads; utility::queue *threads_waiting_for_input; thread *running_thread; utility::list *all_socket_listeners; static uint8_t correct_magic[16] = { 0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00, 0x02, 0x00, 0x3e, 0x00, 0x01, 0x00, 0x00, 0x00 }; #define READ(a, b, c) \ { \ storage::fs_result _result = file.read_file(a, b, c); \ if (_result != storage::fs_result::success) \ return stream_result::io_error; \ } #define TRY_MAR(expr) \ { \ storage::fs_result _result = expr; \ if (_result != storage::fs_result::success) { \ delete process_out; \ return stream_result::io_error; \ } \ } struct load_info { uint64_t foffset; uint64_t fsize; uint64_t vaddr; uint64_t voffset; uint64_t vpages; bool writable; bool executable; }; storage::fs_result map_and_read( const vfile::vfile &file, process *process, uint64_t vaddr, uint64_t faddr, uint64_t len, bool writable, bool executable ) { uint64_t page_vaddr = vaddr & ~4095; int at_start = vaddr & 4095; int at_end = 4096 - len - at_start; uint64_t page_paddr = paging::take_pram_page(); process->map_page(page_vaddr, page_paddr, writable, executable, true); uint64_t page_kvaddr = paging::find_unmapped_vram_region(1); paging::map_kernel_page(page_paddr, page_kvaddr, true, false); storage::fs_result result = storage::fs_result::success; if (at_start) { uint8_t *blank = (uint8_t *)page_kvaddr; for (int i = 0; i < at_start; ++i) blank[i] = 0; } if (len != 0) result = file.read_file(faddr, len, (void *)(page_kvaddr + at_start)); if (at_end) { uint8_t *blank = (uint8_t *)(page_kvaddr + at_start + len); for (int i = 0; i < at_end; ++i) blank[i] = 0; } paging::unmap_kernel_page(page_kvaddr); return result; } stream_result create_application( const vfile::vfile &file, process *&process_out, thread *&thread_out ) { uint8_t magic[16]; if (file.dir_entry.type != storage::file_type::regular_file) return stream_result::not_a_regular_file; if (file.dir_entry.length < 64) return stream_result::not_an_executable; READ(0, 8, magic) READ(16, 8, magic + 8) for (int i = 0; i < 16; ++i) if (magic[i] != correct_magic[i]) return stream_result::not_an_executable; uint64_t entry_point; uint64_t phead_start; uint16_t phead_entry_size; uint16_t phead_entry_count; READ(24, 8, &entry_point) READ(32, 8, &phead_start) READ(54, 2, &phead_entry_size) READ(56, 2, &phead_entry_count) if (file.dir_entry.length < phead_start + phead_entry_size * phead_entry_count) return stream_result::not_an_executable; utility::vector load_infos; for (uint16_t i = 0; i < phead_entry_count; ++i) { uint64_t entry_start = phead_start + phead_entry_size * i; uint32_t seg_type; READ(entry_start, 4, &seg_type) if (seg_type != 1) continue; uint64_t foffset; uint64_t vaddr; uint64_t voffset; uint64_t fsize; uint64_t vsize; uint32_t flags; READ(entry_start + 8, 8, &foffset) READ(entry_start + 16, 8, &vaddr) READ(entry_start + 32, 8, &fsize) READ(entry_start + 40, 8, &vsize) READ(entry_start + 4, 4, &flags) voffset = vaddr % 4096; vaddr -= voffset; if (vsize == 0) continue; if (file.dir_entry.length < foffset + fsize) return stream_result::not_an_executable; if (fsize > vsize) return stream_result::not_an_executable; if (vaddr < 0x200000) return stream_result::not_an_executable; uint64_t vpages = (voffset + vsize - 1) / 4096 + 1; if (vaddr + vpages * 4096 > 0x8000000000) return stream_result::not_an_executable; load_info info = { .foffset = foffset, .fsize = fsize, .vaddr = vaddr, .voffset = voffset, .vpages = vpages, .writable = (flags & 2) == 2, .executable = (flags & 1) == 1 }; load_infos.add_end(info); } process_out = new process(); for (unsigned i = 0; i < load_infos.count; ++i) { const auto &info = load_infos.buffer[i]; uint64_t vaddr = info.vaddr + info.voffset; uint64_t faddr = info.foffset; uint64_t v_remaining = info.vpages * 4096 - info.voffset; uint64_t f_remaining = info.fsize; if (info.voffset != 0) { int to_read = info.fsize < 4096 - info.voffset ? info.fsize : 4096 - info.voffset; if (to_read > 0) { TRY_MAR(map_and_read(file, process_out, vaddr, faddr, to_read, info.writable, info.executable)) vaddr += to_read; faddr += to_read; v_remaining -= to_read; f_remaining -= to_read; } } while (f_remaining > 0) { int to_read = f_remaining < 4096 ? f_remaining : 4096; TRY_MAR(map_and_read(file, process_out, vaddr, faddr, to_read, info.writable, info.executable)) vaddr += to_read; faddr += to_read; v_remaining -= to_read; f_remaining -= to_read; } if (vaddr & 4095) { v_remaining -= 4096 - (vaddr & 4095); vaddr += 4096 - (vaddr & 4095); } while (v_remaining > 0) { map_and_read( file, process_out, vaddr, 0, 0, info.writable, info.executable); vaddr += 4096; v_remaining -= 4096; } } for (uint64_t vaddr = 0x1000; vaddr < 0x1ff000; vaddr += 4096) { uint64_t paddr = paging::take_pram_page(); uint64_t kvaddr = paging::find_unmapped_vram_region(1); paging::map_kernel_page(paddr, kvaddr, true, false); uint8_t *p = (uint8_t *)kvaddr; for (int i = 0; i < 4096; ++i) p[i] = 0; paging::unmap_kernel_page(kvaddr); process_out->map_page(vaddr, paddr, true, false, true); } thread_out = new thread(); process_out->threads.insert_end(thread_out); thread_out->the_process = process_out; thread_out->state = thread_state::paused; thread_out->cpu.rax = 0; thread_out->cpu.rbx = 0; thread_out->cpu.rcx = 0; thread_out->cpu.rdx = 0; thread_out->cpu.rdi = 0; thread_out->cpu.rsi = 0; thread_out->cpu.rbp = 0; thread_out->cpu.rsp = 0x1ff000; thread_out->cpu.r8 = 0; thread_out->cpu.r9 = 0; thread_out->cpu.r10 = 0; thread_out->cpu.r11 = 0; thread_out->cpu.r12 = 0; thread_out->cpu.r13 = 0; thread_out->cpu.r14 = 0; thread_out->cpu.r15 = 0; thread_out->cpu.rflags = 0x200; thread_out->cpu.rip = entry_point; thread_out->cpu.cr3 = process_out->p4_paddr; thread_out->cpu.in_syscall = false; return stream_result::success; } extern "C" void init_applications_asm(); void init_applications() { processes = new utility::id_allocator(); paused_threads = new utility::queue(); threads_waiting_for_input = new utility::queue(); all_socket_listeners = new utility::list(); init_applications_asm(); } //only called from non-interruptable contexts. //cpu argument not on stack. extern "C" [[noreturn]] void resume_thread(const cpu_state &cpu); extern "C" void *copy_syscall_stack(uint8_t *rsp) { uint64_t size = 0xfffffffffffff000 - (uint64_t)rsp; uint8_t *buffer = new uint8_t[size]; for (uint64_t i = 0; i < size; ++i) buffer[i] = rsp[i]; return buffer; } extern "C" void restore_syscall_stack(const uint8_t *from, uint8_t *rsp) { uint64_t size = 0xfffffffffffff000 - (uint64_t)rsp; for (uint64_t i = 0; i < size; ++i) rsp[i] = from[i]; delete[] from; } thread::~thread() { for (auto *p = the_process->threads.first; p; p = p->next) if (p->value == this) { the_process->threads.remove(p); break; } if (the_process->threads.first == 0) { the_process->exit_code = exit_code; the_process->cleanup(); } if (state != thread_state::running) panic(0x9af5e6); } [[noreturn]] void resume_next() { while (paused_threads->count == 0) asm volatile ("sti\nhlt\ncli"); auto *t = paused_threads->take(); running_thread = t; t->state = thread_state::running; resume_thread(t->cpu); } void process::end_process(unsigned exit_code) { while (threads.first != 0) delete threads.first->value; this->exit_code = exit_code; cleanup(); } void process::cleanup() { //TODO panic(0x9af5e6); } socket_stream::socket_stream(socket *sock, bool are_we_b) : sock(sock), are_we_b(are_we_b), our_threads_waiting_to_read(are_we_b ? sock->process_b_threads_waiting_to_read : sock->process_a_threads_waiting_to_read), their_threads_waiting_to_read(are_we_b ? sock->process_a_threads_waiting_to_read : sock->process_b_threads_waiting_to_read), them_to_us(are_we_b ? sock->a_to_b : sock->b_to_a), us_to_them(are_we_b ? sock->b_to_a : sock->a_to_b), them_closed(are_we_b ? sock->a_closed : sock->b_closed), us_closed(are_we_b ? sock->b_closed : sock->a_closed) {} stream_result socket_stream::seek(seek_origin, int64_t) { return stream_result::not_seekable; } stream_result socket_stream::read(uint64_t count, void *into) { uint8_t *buffer = (uint8_t *)into; for (uint64_t i = 0; i < count; ++i) { while (them_to_us.count == 0) { if (them_closed) return stream_result::other_end_closed; if (!save_thread_state(running_thread->cpu)) { running_thread->state = thread_state::waiting; our_threads_waiting_to_read.insert(running_thread); resume_next(); } } buffer[i] = them_to_us.take(); } return stream_result::success; } stream_result socket_stream::write(uint64_t count, const void *from) { if (them_closed) return stream_result::other_end_closed; const uint8_t *buffer = (const uint8_t *)from; for (uint64_t i = 0; i < count; ++i) { if (their_threads_waiting_to_read.count > 0) { auto *ot = their_threads_waiting_to_read.take(); ot->state = thread_state::paused; paused_threads->insert(ot); } us_to_them.insert(buffer[i]); } return stream_result::success; } stream_result socket_stream::get_length(uint64_t &) { return stream_result::not_sized; } stream_result socket_stream::set_length(uint64_t) { return stream_result::not_sized; } socket_stream::~socket_stream() { if (our_threads_waiting_to_read.count > 0) panic(0x9af5e6); if (them_closed) delete sock; else { us_closed = true; while (their_threads_waiting_to_read.count > 0) { auto *t = their_threads_waiting_to_read.take(); t->state = thread_state::paused; paused_threads->insert(t); } } } vfile_stream::vfile_stream(vfile::vfile &&file) : file(utility::move(file)), offset(0) {} stream_result vfile_stream::seek(seek_origin origin, int64_t offset) { uint64_t start_at = {}; switch (origin) { case seek_origin::beginning: start_at = 0; break; case seek_origin::end: start_at = file.dir_entry.length; break; case seek_origin::current_position: start_at = this->offset; break; } if (offset < 0 && (uint64_t)-offset > start_at) return stream_result::out_of_bounds; if (offset + start_at > file.dir_entry.length) return stream_result::out_of_bounds; this->offset = start_at + offset; return stream_result::success; } stream_result vfile_stream::read(uint64_t count, void *into) { if (offset + count > file.dir_entry.length) return stream_result::out_of_bounds; if (file.read_file(offset, count, into) != storage::fs_result::success) return stream_result::io_error; offset += count; return stream_result::success; } stream_result vfile_stream::write(uint64_t count, const void *from) { if (offset + count > file.dir_entry.length) return stream_result::out_of_bounds; (void)from; panic(0x9af5e6); } stream_result vfile_stream::get_length(uint64_t &out) { out = file.dir_entry.length; return stream_result::success; } stream_result vfile_stream::set_length(uint64_t to) { (void)to; panic(0x9af5e6); } }