#include "drive.h" #include "panic.h" #include "pmap.h" #include "util.h" #include "fat.h" #include "log.h" uint8_t n_drives; struct drive drives[256]; bool ignore_already_open = false; void init_drives() { n_drives = 0; } __attribute__ ((const)) static file_id_t unknown_get_file(const struct drive *d, const char *path) { return 0; } __attribute__ ((const)) static uint32_t unknown_get_free_sectors(const struct drive *d) { return 0; } __attribute__ ((const)) static uint32_t unknown_enumerate_dir(const struct drive *d, const char *path, struct directory_content_info *info, uint32_t max) { return 0; } __attribute__ ((const)) static uint32_t unknown_n_dir_entries(const struct drive *d, const char *path) { return 0; } static void unknown_no_call(const struct drive *d) { logf(LOG_ERROR, "file-level operation called on drive %u (%s), which is an unknown file system", d - drives + 1, d->fs_type); } static inline void determine_fs(struct drive *d) { if (try_fat_init_drive(d)) return; d->mapped_to = 0; d->fs_type = "Unknown"; d->get_file = &unknown_get_file; d->free_file = &unknown_no_call; d->load_sector = &unknown_no_call; d->save_sector = &unknown_no_call; d->is_writable = &unknown_no_call; d->get_file_length = &unknown_no_call; d->set_file_length = &unknown_no_call; d->enumerate_dir = &unknown_enumerate_dir; d->n_dir_entries = &unknown_n_dir_entries; d->get_free_sectors = &unknown_get_free_sectors; } //drive should be ready before this. //determine_fs and its children //do not need to make ready or done void commit_drive(struct drive data) { determine_fs(&data); data.mapped_to = 0; drives[n_drives] = data; data.done(drives + n_drives); ++n_drives; } void map_path(const char *full, struct drive **d, const char **path) { *d = 0; *path = 0; switch (full[0]) { case '/': for (struct drive *i = drives; i < drives + n_drives; ++i) { if (!i->mapped_to) continue; uint32_t j = 0; while (1) { if (!i->mapped_to[j]) { if (!*path || (j >= *path - full)) { *path = full + j + 1; *d = i; } break; } else if (i->mapped_to[j] != full[j + 1]) break; ++j; } } return; uint32_t id; case ':': id = 0; for (uint32_t i = 1; i < 9; ++i) { id *= 16; const char c = full[i]; if ((c >= '0') && (c <= '9')) id += c - '0'; else if ((c >= 'a') && (c <= 'f')) id += c - 'a' + 10; else return; } if (full[9] != ':') return; for (struct drive *i = drives; i < drives + n_drives; ++i) if (i->uid == id) { *d = i; *path = full + 10; return; } } } void map_drives() { for (struct drive *d = drives; d < drives + n_drives; ++d) { file_id_t fid = d->get_file(d, "_fstab"); if (!fid) continue; const uint32_t len = d->get_file_length(d, fid); void *fstab = allocate_kernel_pages(len / 512 + 1); fmcpy(fstab, d, fid, 0, len); d->free_file(d, fid); const uint32_t n_entries = *(uint32_t *)fstab; uint32_t next_id = *(uint32_t *)(fstab + 4); fstab += 8; for (uint32_t i = 0; i < n_entries; ++i) { for (struct drive *dd = drives; dd < drives + n_drives; ++dd) if (dd->uid == next_id) dd->mapped_to = fstab + 4; const uint32_t plen = *(uint32_t *)fstab; next_id = *(uint32_t *)(fstab + 4 + plen); *(char *)(fstab + 4 + plen) = '\0'; fstab += 8 + plen; } } }