1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
#include "drive.h"
#include "panic.h"
#include "util.h"
#include "ata.h"
#include "fat.h"
#include "pmap.h"
#define MAX_FAT_DRIVES 16
#define MAX_OPEN_FILES_PER_DRIVE 32
#define PATH_SEP_CHAR '/'
#define EXT_SEP_CHAR '.'
enum {
FA_READ_ONLY = 0x01,
FA_HIDDEN = 0x02,
FA_SYSTEM = 0x04,
FA_LABEL = 0x08,
FA_DIRECTORY = 0x10,
FA_ARCHIVE = 0x20,
FA_LFN = 0x0f
};
struct directory_entry {
uint8_t name[11];
uint8_t attrib;
uint8_t name_case;
uint8_t created_decimal;
uint16_t created_time;
uint16_t created_date;
uint16_t accessed_date;
uint16_t ignore;
uint16_t modified_time;
uint16_t modified_date;
uint16_t first_cluster;
uint32_t length;
} __attribute__ ((packed));
struct fat_info {
//3 bytes jump
uint8_t oem[8];
uint16_t bytes_per_sector;//Assumed to be 512
uint8_t sectors_per_cluster;//Assumed to be 1
uint16_t reserved_sectors;
uint8_t fats;//Only first is used
uint16_t root_entries;
uint16_t sectors;//Assumed not to be 0
uint8_t media_type;
uint16_t sectors_per_fat;
uint16_t sectors_per_track;
uint16_t heads;
uint32_t hidden_sectors;
uint32_t sectors_long;
uint8_t drive_number;
uint8_t reserved;
uint8_t ext_boot_marker;
uint32_t volume_id;
uint8_t label[11];
uint8_t fs_type[8];
} __attribute__ ((packed));
#define CTOS(c, fdi) ((fdi)->data_start + (c) - 2)
struct open_file_info {
//directory entry is the di_number'th entry in the di_sector'th sector
//di_sector of 0 indicates an unused handle
uint32_t di_sector;
uint8_t di_number;
uint16_t start_cluster;
uint32_t length;
};
struct fat_drive_info {
const struct fat_info *fi;
uint16_t *fat;
uint16_t root_start;
uint16_t data_start;
struct open_file_info open_files[MAX_OPEN_FILES_PER_DRIVE];
};
static struct fat_drive_info infos[MAX_FAT_DRIVES];
static uint8_t next_id;
static uint8_t fat_driver_buffer[512];
static struct fat_info *next_fi;
static void alloc_next_fi() {
if (!((uint32_t)(next_fi = (struct fat_info *)((uint32_t)next_fi + 64)) & 0xfff))
if (!(next_fi = allocate_kernel_pages(1)))
PANIC("Out of memory in FAT driver.");
}
static const struct drive *cur_drive;
static fs_id_t cur_id;
static const struct fat_drive_info *cur_fdi;
static struct directory_entry *cur_dir;
static uint32_t cur_sect;
//loads cluster `c`
static void load_cluster(uint16_t c, void *to) {
if (c == 0) {
*(uint8_t *)to = 0;
return;
}
uint32_t s = CTOS(c, cur_fdi);
cur_drive->read_sectors(cur_drive, s, 1, to);
}
__attribute__ ((pure))
static uint16_t next_cluster(uint16_t c) {
uint16_t found = infos[cur_id].fat[c];
return (found < 2) || (found >= 0xfff0) ? 0 : found;
}
static const uint8_t this_dir[] = {'.', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '};
static const uint8_t parent_dir[] = {'.', '.', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '};
static inline bool check_fat_names(const uint8_t *a, const uint8_t *b) {
return (((uint32_t *)a)[0] == ((uint32_t *)b)[0]) &&
(((uint32_t *)a)[1] == ((uint32_t *)b)[1]) &&
(((uint16_t *)a)[4] == ((uint16_t *)b)[4]) &&
(((uint8_t *)a)[10] == ((uint8_t *)b)[10]);
}
//after: cur_dir -> specified entry in root
static bool try_locate_root_entry(const uint8_t *fat_name) {
cur_sect = cur_fdi->root_start - 1;
cur_dir = (struct directory_entry *)(fat_driver_buffer + 512);
while (true) {
if (cur_dir == (struct directory_entry *)(fat_driver_buffer + 512)) {
cur_dir = (struct directory_entry *)fat_driver_buffer;
++cur_sect;
cur_drive->read_sectors(cur_drive, cur_sect, 1, cur_dir);
}
if (!*(uint8_t *)cur_dir)
return false;
if (check_fat_names(cur_dir->name, fat_name))
return true;
else
++cur_dir;
}
}
//before: cur_dir -> entry of dir to search
//after: cur_dir -> specified entry in dir
static bool try_locate_entry(const uint8_t *fat_name) {
uint16_t cur_dir_cluster = cur_dir->first_cluster;
load_cluster(cur_dir_cluster, fat_driver_buffer);
cur_dir = (struct directory_entry *)fat_driver_buffer;
while (true) {
if (cur_dir == (struct directory_entry *)(fat_driver_buffer + 512)) {
cur_dir = (struct directory_entry *)fat_driver_buffer;
load_cluster(cur_dir_cluster = next_cluster(cur_dir_cluster), fat_driver_buffer);
}
if (!*(uint8_t *)cur_dir)
return false;
if (check_fat_names(cur_dir->name, fat_name)) {
cur_sect = CTOS(cur_dir_cluster, cur_fdi);
return true;
}
else
++cur_dir;
}
}
//puts first path component's fat name into fat_name_buffer,
//returns rest of path
static const char *split_path(const char *path, uint8_t *fat_name_buffer) {
uint8_t pi = 0, fi = 0;
while (1) {
if ((path[pi] == PATH_SEP_CHAR) || !path[pi]) {
while (fi != 11)
fat_name_buffer[fi++] = (uint8_t)' ';
return path + (path[pi] ? pi + 1 : pi);
}
if (path[pi] == EXT_SEP_CHAR)
if (fi <= 8) {
while (fi != 8)
fat_name_buffer[fi++] = (uint8_t)' ';
++pi;
}
else
PANIC("Bad path in FAT16 driver.");
else if (((fi == 8) && (path[pi - 1] != EXT_SEP_CHAR)) || (fi == 11))
PANIC("Bad path in FAT16 driver.");
else {
fat_name_buffer[fi++] = (uint8_t)path[pi++];
}
}
}
//cur_dir -> specified entry
static bool try_load_from_path(const struct drive *d, const char *path) {
cur_drive = d;
cur_id = d->drive_id;
cur_fdi = &infos[cur_id];
uint8_t fat_name[11];
path = split_path(path, fat_name);
if (!try_locate_root_entry(fat_name))
return false;
while (*path) {
path = split_path(path, fat_name);
if (!try_locate_entry(fat_name))
return false;
}
return true;
}
static file_id_t fat_get_file(const struct drive *d, const char *path) {
d->ready(d);
struct open_file_info *open_files = infos[d->drive_id].open_files - 1;
for (file_id_t n = 1; n != MAX_OPEN_FILES_PER_DRIVE + 1; ++n)
if (!open_files[n].di_sector) {
if (!try_load_from_path(d, path)) {
d->done(d);
return 0;
}
d->done(d);
open_files[n].di_sector = cur_sect;
open_files[n].di_number = cur_dir - (struct directory_entry *)fat_driver_buffer;
open_files[n].start_cluster = cur_dir->first_cluster;
open_files[n].length = cur_dir->length;
return n;
}
PANIC("Maximum number of files open reached for FAT drive.");
}
static void fat_free_file(const struct drive *d, file_id_t fid) {
infos[d->drive_id].open_files[fid - 1].di_sector = 0;
}
static void fat_load_sector(const struct drive *d, file_id_t fid, uint32_t sector, void *at) {
cur_drive = d;
cur_id = d->drive_id;
cur_fdi = &infos[cur_id];
uint16_t c = cur_fdi->open_files[fid - 1].start_cluster;
for (uint32_t i = 0; i < sector; ++i)
c = next_cluster(c);
d->ready(d);
load_cluster(c, at);
d->done(d);
}
__attribute__ ((pure))
static uint32_t fat_get_file_length(const struct drive *d, file_id_t fid) {
return infos[d->drive_id].open_files[fid - 1].length;
}
__attribute__ ((pure))
static uint32_t fat_get_free_sectors(const struct drive *d) {
uint16_t *start = infos[d->fs_id].fat + 2;
uint16_t *end = start + d->n_sectors - infos[d->fs_id].data_start;
uint32_t count = 0;
for (uint16_t *i = start; i < end; ++i)
if (!*i)
++count;
return count;
}
static void fat_name_to_path(const uint8_t *fat_name, char *path) {
uint8_t last_visible = -1;
for (uint8_t i = 0; i < 8; ++i) {
if (fat_name[i] != (uint8_t)' ')
last_visible = i;
path[i] = (char)fat_name[i];
}
if (fat_name[8] || fat_name[9] || fat_name[10]) {
path[last_visible + 1] = EXT_SEP_CHAR;
for (uint8_t fi = 8, ti = last_visible + 2; fi < 11; ++fi, ++ti) {
if (fat_name[fi] != (uint8_t)' ')
last_visible = ti;
path[ti] = (char)fat_name[fi];
}
}
path[last_visible + 1] = '\0';
}
static uint32_t enumerate_root(const struct drive *d, struct directory_content_info *info, uint32_t max) {
uint32_t sect = infos[d->drive_id].root_start - 1;
struct directory_entry *entry = (struct directory_entry *)(fat_driver_buffer + 512);
struct directory_content_info *fill = info;
while (true) {
if (entry == (struct directory_entry *)(fat_driver_buffer + 512)) {
entry = (struct directory_entry *)fat_driver_buffer;
++sect;
d->read_sectors(d, sect, 1, entry);
}
if (!*(uint8_t *)entry || (info == fill + max)) {
d->done(d);
return fill - info;
}
if (entry-> attrib & FA_LABEL) {
++entry;
continue;
}
fill->is_dir = entry->attrib & FA_DIRECTORY;
fill->size = entry->length;
fat_name_to_path(entry->name, fill->name);
++entry;
++fill;
}
}
static uint32_t fat_enumerate_dir(const struct drive *d, const char *path, struct directory_content_info *info, uint32_t max) {
d->ready(d);
if (!*path)
return enumerate_root(d, info, max);
if (!try_load_from_path(d, path)) {
d->done(d);
return 0;
}
uint16_t cluster = cur_dir->first_cluster;
load_cluster(cluster, fat_driver_buffer);
struct directory_entry *entry = (struct directory_entry *)fat_driver_buffer;
struct directory_content_info *fill = info;
while (true) {
if (entry == (struct directory_entry *)(fat_driver_buffer + 512)) {
entry = (struct directory_entry *)fat_driver_buffer;
load_cluster(cluster = next_cluster(cluster), fat_driver_buffer);
}
if (!*(uint8_t *)entry || (fill == info + max)) {
d->done(d);
return fill - info;
}
if (check_fat_names(entry->name, this_dir) || check_fat_names(entry->name, parent_dir)) {
++entry;
continue;
}
fill->is_dir = entry->attrib & FA_DIRECTORY;
fill->size = entry->length;
fat_name_to_path(entry->name, fill->name);
++entry;
++fill;
}
}
void init_fat() {
next_fi = allocate_kernel_pages(1);
next_id = 0;
}
bool try_fat_init_drive(struct drive *d) {
if (next_id >= MAX_FAT_DRIVES)
PANIC("Maximum number of FAT drives reached.");
if (!d->read_sectors(d, 0, 1, fat_driver_buffer))
return false;
memcpy(next_fi, fat_driver_buffer + 3, sizeof(struct fat_info));
uint32_t *fs_type_32 = (uint32_t *)next_fi->fs_type;
if ((fs_type_32[0] != ('F' + 'A' * 256 + 'T' * 65536 + '1' * 16777216)) ||
(fs_type_32[1] != ('6' + ' ' * 256 + ' ' * 65536 + ' ' * 16777216)))
return false;
d->fs_type = "FAT16";
d->get_file = &fat_get_file;
d->free_file = &fat_free_file;
d->load_sector = &fat_load_sector;
d->get_file_length = &fat_get_file_length;
d->enumerate_dir = &fat_enumerate_dir;
d->get_free_sectors = &fat_get_free_sectors;
d->fs_id = next_id;
infos[next_id].fi = next_fi;
infos[next_id].fat = allocate_kernel_pages(((next_fi->sectors_per_fat - 1) >> 3) + 1);
infos[next_id].root_start = next_fi->reserved_sectors +
next_fi->sectors_per_fat * next_fi->fats;
infos[next_id].data_start = infos[next_id].root_start +
((next_fi->root_entries - 1) >> 4) + 1;
d->read_sectors(d, next_fi->reserved_sectors, next_fi->sectors_per_fat, infos[next_id].fat);
struct open_file_info *open_files = infos[next_id].open_files - 1;
for (file_id_t i = 0; i < MAX_OPEN_FILES_PER_DRIVE; ++i)
open_files[i].di_sector = 0;
alloc_next_fi();
++next_id;
return true;
}
|