1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
#include "drive.h"
#include "elf.h"
#include "util.h"
#include "idt.h"
#include "log.h"
#include "panic.h"
#include "task.h"
#include "paging.h"
#include "pmap.h"
#include "kbd.h"
enum {
IDT_PRESENT = 0x80,
IDT_INT = 0x0e,
};
struct idt_entry {
uint16_t addr_low;
uint16_t cs;
uint8_t zero;
uint8_t flags;
uint16_t addr_high;
} __attribute__ ((packed));
struct idt_entry idt[256];
struct {
uint16_t limit;
uint32_t start;
} __attribute__ ((packed)) idtr = {
.limit = 256 * sizeof(struct idt_entry) - 1,
.start = (uint32_t)idt
};
//file handles as (drive_number << 8) + file_id_t
static uint32_t sc_open_file(uint32_t drive_number, char *path) {
return (drive_number << 8) + drives[drive_number].get_file(drives + drive_number, path);
}
static void sc_close_file(uint32_t handle) {
drives[handle >> 8].free_file(drives + (handle >> 8), handle & 0xff);
}
static uint32_t sc_file_get_size(uint32_t handle) {
return drives[handle >> 8].get_file_length(drives + (handle >> 8), handle & 0xff);
}
static uint32_t sc_file_read(uint32_t handle, uint32_t file_offset, uint32_t count, void *buffer) {
uint32_t len = sc_file_get_size(handle);
if (file_offset + count > len)
count = len - file_offset;
fmcpy(buffer, drives + (handle >> 8), handle & 0xff, file_offset, count);
return count;
}
static bool sc_start_task(uint32_t drive_number, char *path, const char *pass) {
switch_to_kernel_cr3();
bool result = try_elf_run(drives + drive_number, vma_to_pma(active_task->page_directory, path), pass);
switch_to_task_cr3();
return result;
}
static void *sc_allocate_ram(uint32_t pages) {
return pd_user_allocate_anywhere_writable(active_task->page_directory, pages);
}
enum mi_arg {
MI_KERNEL_MAX,
MI_KERNEL_LEFT,
MI_USER_MAX,
MI_USER_LEFT,
MI_TASK_LEFT
};
__attribute__ ((pure))
static uint32_t sc_memory_info(enum mi_arg arg) {
switch (arg) {
case MI_KERNEL_MAX:
return max_kernel_pages;
case MI_KERNEL_LEFT:
return kernel_pages_left;
case MI_USER_MAX:
return max_user_pages;
case MI_USER_LEFT:
return user_pages_left;
case MI_TASK_LEFT:
PANIC("TODO: memory info task left");
default:
return -1;
}
}
void const *syscall_table[] = {
&sc_open_file,
&sc_close_file,
&sc_file_read,
&sc_file_get_size,
&sc_start_task,
&logsz,
&get_key_code,
&sc_allocate_ram,
&sc_memory_info
};
//these aren't really void (*)()'s, but gcc complains if we take an address of a void, so we give it a type
typedef void (*isr_t)();
extern isr_t syscall_isr;
extern isr_t quit_isr;
extern isr_t yield_isr;
extern isr_t kbd_isr;
static void register_int(uint8_t n, isr_t *isr, uint8_t dpl) {
idt[n].addr_low = (uint32_t)isr & 0xffff;
idt[n].addr_high = (uint32_t)isr >> 16;
idt[n].cs = 0x10;
idt[n].flags = IDT_PRESENT | (dpl << 5) | IDT_INT;
}
enum {
PIC_MCMD = 0x0020,
PIC_MDATA = 0x0021,
PIC_SCMD = 0x00a0,
PIC_SDATA = 0x00a1
};
enum {
PIC_RESET = 0x11
};
void init_idt() {
for (uint16_t i = 0; i < 256; ++i) {
idt[i].flags = 0;
idt[i].zero = 0;
}
register_int(0x30, &syscall_isr, 3);
register_int(0x38, &quit_isr, 3);
register_int(0x39, &yield_isr, 3);
register_int(0x21, &kbd_isr, 0);
outb(PIC_MCMD, PIC_RESET);
outb(PIC_SCMD, PIC_RESET);
outb(PIC_MDATA, 0x20);
outb(PIC_SDATA, 0x28);
outb(PIC_MDATA, 0x04);
outb(PIC_SDATA, 0x02);
outb(PIC_MDATA, 0x01);
outb(PIC_SDATA, 0x01);
outb(PIC_MDATA, 0xfd);
outb(PIC_SDATA, 0xff);
asm volatile (
"lidt %0"
: : "m" (idtr) : "al");
}
|